

Tesera[™] T / Tesera[™] ST

Transforaminal Lumbar Interbody Fusion (TLIF) Solutions

Tesera TLIF solutions feature our revolutionary Tesera Trabecular Technology in both a traditional curved, as well as straight formats, giving you maximum intraoperative options to fit any patient anatomy.

Tesera Trabecular Technology™

- Optimal environment for bone IN-GROWTH and ON-GROWTH
- 3D-printed Titanium-alloy (Ti6Al4V)
- Truly-porous trabecular structure
- Random, interconnected pores (500 micron average pore size)
- 68% Average Porosity
- Hydroxyapetite-blasted, for micro-surface roughness

- Available in heights from 7mm 16mm
- 5° lordotic profile

- Available in lengths of 30mm and 34mm X 11mm width
- Available in heights from 7mm 16mm
- Convex profile

Instruments

- Straight Shavers available from 6mm 14mm (1mm increments)
- Curved and Straight Trials available from 7mm 14mm (1mm increments)
- Threaded Inserters
- Tamps, disc prep and nerve retractors included

About Tesera Trabecular Technology (T3)...

Tesera implants feature porous titanium surfaces which create the optimal environment for bone on-growth and in-growth. (Figure 1) Independent study of the Tesera structure proves rapid and complete bone ingrowth at 12 weeks, without press-fit or biologics. (Figure 2)

Tesera implants combine revolutionary manufacturing technology, advanced material science and bioanalogous design into cutting-edge implants that push the expectations of how spinal implants interact with the body.

Figure 1: SEM image of the outer surface of the Tesera porous structure.¹

Figure 2: Pictured above is a 75µm section view from a weight-bearing Ovine study showing bone ingrowth into the Tesera trabecular structure at 12 weeks.² Black=Titanium, Pink=Bone, Blue=Fibrous Tissue and White=Pore Space

REFERENCES

- 1. Data on file with Renovis Surgical. SEM Evaluation. Test Report K13047307-1.
- 2. Surgeries were performed at IMDS Discovery Research (Logan, Utah); processing and analysis of the specimens was conducted by the Bone and Joint Research Laboratory (Salt Lake City, Utah). Data on file with Renovis Surgical.
- * The Ovine study data shown is representative of Renovis Surgical Technologies' Electron Beam additively manufactured porous structure. Tesera P/T/ST implants are manufactured using a laser sintering additively manufactured porous structure, but are representative of the Electron Beam porous structure.

Renovis Surgical Technologies, Inc.

1901 West Lugonia Ave.
Suite 340
Redlands, CA 92374
(800) 736-6847
www.renovis-surgical.com
www.teseratrabeculartechnology.com
©2016 Renovis Surgical Technologies, Inc.

Available Tesera™ Systems:	
Tesera P	PLIF
Tesera SA	Stand-alone ALIF
Tesera SC	Stand-alone Cervical
Tesera ST	Straight TLIF
Tesera T	TLIF