S128 Anterior Lumbar Interbody Fusion (ALIF) Rev. D #### DESCRIPTION The S128 Anterior Lumbar Interbody Fusion (ALIF) System is an internal spinal fixation system comprised of PEEK or Titanium Interbody cages, Titanium Cover Plate assemblies. The system also includes several instruments that assist in proper implantation; these instruments include: Trials, Sizers, Cage Inserters, and Cover Plate Inserters. #### IMPORTANT NOTE: This product is marked for the specific indications described in its labeling. The use of this product for other than its intended purpose(s) is either contraindicated (see CONTRAINDICATIONS) or is without evidence to support the safety and effectiveness of such use. For the information of individuals and institutions contemplating use of this product for other than labeled indications (i.e., off-labeled use), such use may be experimental and may be the subject of restrictions under applicable laws and regulations. #### MATERIAL: All implant components of the S128 Anterior Lumbar Interbody Fusion (ALIF) System are made of the following materials: - Titanium Alloy: Ti6Al4V - Polyetheretherketone (PEEK): according to ASTM F-2026 - Tantalum: according to ISO 13782-1996 and ASTM F-560 #### INDICATIONS FOR USE: The S128 Anterior Lumbar Interbody Fusion (ALIF) System is indicated for intervertebral body fusion procedures in skeletally mature patients with degenerative disc disease (DDD) of the lumbar spine at one or two contiguous levels from L2-S1. Degenerative disc disease is defined as discogenic back pain with degeneration of the disc confirmed by history and radiographic studies. These DDD patients may have up to Grade 1 spondylolisthesis or retrolisthesis at the involved level(s). S128 ALIF System implants are to be used with autogenous bone graft. Patients should be skeletally mature and have at least six months of non-operative treatment. The S128 ALIF System is a stand-alone device and is intended to be used with the end plate and screws provided and requires no additional supplementary fixations. The anterior cover plate must be utilized whenever the device is implanted using the bone screws provided. Should the physician choose to use fewer than the four screws provided, additional supplemental fixation cleared by the FDA for use in the lumbar spine must be used. # GENERAL CONDITIONS OF USE: The safe implantation of Anterior Lumbar Interbody Fusion (ALIF) Systems requires an in-depth knowledge of human vertebral anatomy as well as a specific patient's anatomical variations. The implantation of the S128 Anterior Lumbar Interbody Fusion (ALIF) System should be performed only by experienced spinal surgeons with specific training in the use of interbody fusion. In addition, the surgeon must be knowledgeable of the mechanical and metallurgical limitations of this implant. The S128 Anterior Lumbar Interbody Fusion (ALIF) System should not be used in conjunction with components from a different manufacturer, or made of a different material. Under no circumstances should any component of the S128 Anterior Lumbar Interbody Fusion (ALIF) System be reused after implantation or any other circumstance that has subjected an individual component to mechanical stress. After spinal fusion occurs, these devices serve no functional purpose and may be removed. The decision to explant the surgeon and the patient with due regard to the risks associated with a second surgery compared to the benefits of such. The S128 ALIF System has been tested as a standalone construct. # CONTRAINDICATIONS: Contraindications to using the S128 Anterior Lumbar Interbody Fusion (ALIF) System are similar to those of other Anterior Lumbar Interbody Fusion (ALIF) Systems and consist of the following: - 1. Patients that are overweight, obese, or are occupationally or recreationally subject to heavy lifting, twisting, repetitive bending, or stooping, to a degree that would produce loads on the spinal system leading to failure of fixation or implant failure. - 2. Any patient not needing a bone graft and fusion, or where fracture healing is not required - 3. Patients with bony abnormalities that grossly distort anatomy and/or prevent placement of the implant without risk of impairment to anatomical structures or physiologic performance. - Patients with a suspected or documented metal allergy or intolerance. - Inadequate tissue coverage over the operative site. - 6. Recent or active infection, particularly if in or adjacent to the spine or spinal structures. - 7. Relative contraindications include open wounds as well as fever, leukocytosis, or other signs of systemic infection. Diminished bone quality is a relative contraindication. This may limit the surgeon's ability to achieve adequate implant fixation, structural support, or anatomic correction. These conditions include certain degenerative diseases, postoperative care instructions is a relative contraindication. These conditions include diminished ability to comprehend and adhere to post-operative care instructions is a relative contraindication. These conditions include diminished mental capacity, mental illness, alcohol or drug abuse and Pregnancy. ### POTENTIAL RISKS: Potential risks identified with the use of this device system, which may require additional surgery, include: device component fracture, loss of fixation, nonunion, vertebral fracture, neurological injury, and vascular or visceral injury. - 1. Correct implant selection is vital. Selecting the proper implant size, shape, and design increases the potential for satisfactory fixation. While proper selection can help minimize risks, the size and shape of human bones present implant size, shape, and strength limitations. Metallic internal fixation devices cannot withstand activity levels equal to those placed on normal healthy bone. No implant can be expected to withstand indefinitely the unsupported stress of full weight bearing. - Implants can break when subjected to the increased loading associated with delayed union or nonunion. Internal fixation appliances are load-sharing devices that are used to obtain alignment until normal healing occurs. If healing is delayed or does not occur, the implant may eventually break due to metal fatigue. The degree or success of union, loads produced by weight bearing, and activity levels among other conditions will dictate implant longevity. Notches, scratches or implant bending during the surgery may also contribute to early failure. Fully inform patients of the implant failure risks. - 3. Mixing metals can cause corrosion. There are many forms of corrosion damage, and several of these occur on metals surgically implanted in humans. General or uniform corrosion is present on all implanted metals and alloys. The rate of corrosive attack on metal implant devices is usually very low due to the presence of passive surface films. Dissimilar metals in contact, such as titanium and stainless steel, accelerate the corrosion process of stainless steel, and more rapid attack occurs. The presence of corrosion often accelerates fatigue fracture of implants. The amount of metal compounds released into the body system will also increase. Internal fixation devices, such as rods, hooks, wires, etc., that come into contact with other metal objects, must be made from like or compatible materials. ### PATIENT SELECTION: The following factors can be extremely important to the eventual success of the procedure: - 1. The patient's occupation or activity. If the patient is involved in an occupation or activity that includes heavy lifting, muscle strain, twisting, repetitive bending, stooping, running, substantial walking, or manual labor, he/she should not return to these activities until the bone is fully healed. Even with full healing, the patient may not be able to return to these activities successfully. - 2. Senility, mental illness, alcoholism, or drug abuse. These conditions, among others, may cause the patient to ignore certain necessary limitations and precautions in the device use, leading to implant failure or other complications. - 3. Certain degenerative diseases. In some cases, degenerative disease progression may be so advanced at implantation that it may substantially decrease the device's expected useful life. For such cases, orthopedic devices can only be considered a delaying technique or temporary remedy. - 4. Foreign body sensitivity. No pre-operative test can completely exclude the possibility of sensitivity or allergic reaction. Patients can develop sensitivity or allergy after implants have been in the body for a period of time. - 5. Smoking. Patients who smoke have been observed to experience higher rates of pseudoarthrosis following surgical procedures where bone graft is used. Additionally, smoking has been shown to cause diffuse degeneration of intervertebral discs. Progressive degeneration of adjacent segments caused by smoking can lead to late clinical failure (recurring pain) even after successful fusion and initial clinical improvement. ## WARNINGS AND CAUTIONS: Only experienced spinal surgeons with specific training in the use of interbody fusion system should implant interbody fusion devices, because this is a technically demanding procedure presenting a risk of serious injury to the patient - 1. The correct selection of the implant is extremely important. The potential for success is increased by the selection of the proper size, share, and design of the implant. The size and shape of the human bones present limiting restrictions of the size and strength of implants. No implant can be expected to withstand the unsupported stresses of full weight bearing. - 2. Single use only. Surgical implants must never be reused. Even though the device appears undamaged, it may have small defects and internal stress patterns which may lead to early breakage. - 3. Correct implant handling is vital. These devices may not be contoured. Avoid any notching, scratching or reverse bending of the devices when handling. Alterations will produce defects in surface finish and internal stresses that may become the focal point for eventual breakage. Do not use the implant if damage is suspected. - 4. Non-sterile: the S128 Anterior Lumbar Interbody Fusion System implants and instruments are provided non-sterile, and therefore, must be sterilized before each use. - 5. Patients with previous surgery at the levels to be treated may have different clinical outcomes compared to those without a previous surgery. - 6. Adequately instruct the patient. Postoperative care and the patient's ability and willingness to follow instructions are among the most important aspects of successful bone healing. Inform the patient about the implant limitations, and to limit physical activities, especially lifting and twisting motions and participating in any type of sports. Tell the patient that a metallic implant is not as strong as normal healthy bone and could loosen, bend and/or break if excessive demands are placed on it, especially in the absence of complete bone healing. Implants displaced or damaged by improper activities may migrate and damage the nerves or blood vessels. Active, debilitated, or demented patients who cannot properly use weight-supporting devices may be particularly at risk during postoperative rehabilitation. - 7. Kyocera Implants and Instruments have not been tested for adverse effect in a Magnetic Resonance Imaging (MRI) environment. The implants in the S128 ALIF are manufactured from non-ferromagnetic materials as listed in the materials section of this IFU. Potential risks of placing implants in or near the magnetic field include: - a. Movement of ferromagnetic components through magnetically induced force and torque. - Localized heating of components caused by radio frequency induction heating. - c. Image artifacts created by interaction between metallic components and the magnetic field. ## MRI SAFETY: S128 Anterior Interbody Fusion (ALIF) System implants may be manufactured from non-ferromagnetic materials. These implants have not been evaluated for safety and compatibility in the MR environment. They have not been tested for heating, migration, or image artifact in the MR environment. The safety of the S128 ALIF System implants in the MR environment is unknown. Scanning a patient who has this device may result in patient injury. #### ADVERSE EFFECTS: In addition to the obvious risk that any orthopedic implant may fail, loosen, or fracture, the following risks of adverse tissue responses and possible complications must be explained to and discussed with the patient: - 1. There have been reports in literature that a variety of metals, polymers, chemicals, and other materials used in the manufacturing of orthopedic implants may cause cancer and other adverse reactions. Because of the long latency period required to induce tumors in humans, there is no conclusive evidence of the relationship between orthopedic implants and malignant tumors. Even though no clear association has been established, any risks and uncertainties regarding the long term effects of artificial joints and fixation devices should be discussed with the patient prior to surgery. The patient should also know that any condition that causes chronic damage to tissues may be oncogenic. Cancer found in the vicinity of an implant may be due to factors unrelated to the implant materials such as: metastasis from sentences in the affected areas should be warned accordingly. The patient should also know that any condition that causes chronic damage to tissues may be oncogenic. Cancer found in the vicinity of an implant may be due to factors unrelated to the implant materials such as: metastasis from sentences in the affected areas should be warned accordingly. - 2. Implantation of foreign materials in tissues can elicit an inflammatory reaction. Recent literature suggests that wear debris (including metal, polyethylene, ceramic, and cemented particles) can initiate the process of histiocytic granuloma formation and consequent osteolysis and loosening. While formation wear debris may be an inevitable consequence of impaction and/or motion at bone-to-implant surfaces, optimal technique for fixation of the device should be employed in order to minimize motion that can generate such particles at the bone/prosthesis or prosthesis/prosthesis interface. Additionally, thoroughly irrigate the wound to prevent debris associated with implantation from remaining within the disc space prior to wound closure. - 3. Metal sensitivity has been reported following exposure to orthopedic implants. The most common metallic sensitizers (nickel, cobalt, and chromium) are present in orthopedic grade stainless steel and cobalt-chrome alloys. Titanium and its alloys (such as TivaniumTM Ti-6AL-4V Alloy) are markedly less antigenic and are recommended for use in persons with a history of allergies or metal sensitivity. # HANDLING OF IMPLANTS - 1. Receipt Carefully unwrap and handle non-sterilized implants and instruments upon receipt to avoid scratching, marking, or abrasion by other implants, instruments, unpacking tools, or by dropping or otherwise endangering the surface finish or configuration. - 2. Transport Transport in a manner to preclude any damage or alteration to the received condition of the implant or instrument. - 3. Storage Store implants or instruments prior to use in such a manner as to maintain the device's surface finish or configuration, or both. Stock Rotation—The principle of first in, first out, is recommended. Store implants in the operating room in such a manner as to isolate and protect the implant's surface, sterility, and configuration. Keep implants made of different metals separated. Store the implants and instruments in the operating room in such a manner as to isolate the instruments from the implants. - 4. Traceability Implants are identified by a catalog number or lot number, or both, on the package label and surface of the device. Record these control numbers and retain for transfer to patient records, to facilitate inventory, stock rotation, medical device reporting, and/or possible traceability to the manufacturer. ### CLEANING All instruments must be thoroughly cleaned before each sterilization (including first use) and introduction into a sterile field. All products should be treated with care. Improper use or handling may lead to damage and possible improper functioning of the device. KYOCERA Instrument IFU, p/n 4001-001 provides more detailed information about proper cleaning of the instruments in the \$128\$ ALIF System. Instruments that are specifically designed for use with the S128 ALIF System include trials, sizers, implant/cage inserters and the cover plate inserter. Other instruments are also provided for use with the S128 ALIF System. For a list of all instruments, refer to the S128 ALIF Surgical Technique manual. Keep devices moist and do not allow blood and/or bodily fluids to dry on the devices. The decontamination process should begin immediately after completion of the surgical procedure. Kyocera rigid instrument cases may be washed and/or disinfected by using an automated washer-disinfection unit utilizing thermal disinfection. Temperatures, cycles, and disinfectant type used as instructed by manufacturer of washer-disinfection unit. Devices must be processed separately from trays and cases. All devices must be thoroughly cleaned, decontaminated and sterilized as follows (and as per KYOCERA Instrument IFU, p/n 4001-001): - Pre-Cleaning: Disassemble devices where applicable. The majority of the surgical instruments and trial devices are simply constructed and will not require disassembly. However, some of the more complex instruments are made of several components and these should be disassembled into their individual parts. The Angled Driver Assembly and Large Modular Handle must be disassembled before cleaning. Instructions for disassembling the Angled Driver Assembly are included in the packaging for the instrument and available upon request, IFU 4001-004. No other S128 ALIF System instruments require disassembly. - 2. First Rinse: Rinse devices under running tap water for a minimum of 2 minutes. Use a soft-bristled brush to assist in the removal of gross soil and debris. Actuate devices with moving parts. Clear lumens/cannula/channels/holes of all debris using an appropriately sized bottle brush. - 3. **Decontamination:** Soak the devices completely in an enzymatic cleaner or detergent solution* (e.g. ENZOL® Enzymatic Detergent). Follow the enzymatic cleaner or detergent manufacturer's instructions for use for correct temperature, water quality and concentration. Fully immerse the devices and allow them to soak for a minimum of 20 minutes. Following soak, use a soft-bristled brush to assist in the removal of gross soil, debris or contaminants, ensuring hard to reach areas are accessed and articulating devices with moving parts. - 4. Rinsing: Remove the devices from the enzyme solution and rinse in tap water for a minimum of 3 minutes. Use a syringe, pipette or water jet to flush lumens/cannula/channels/holes. Articulate devices with moving parts under running water in order to rinse thoroughly. - 5. Washing: Immerse devices in the ultrasonic washer/cleaner with enzymatic cleaner or detergent solution* (e.g. ENZOL® Enzymatic Detergent) and sonicate for a minimum of 15 minutes. Follow the manufacturer's specifications for suggested water level, temperature, water quality and concentration of enzymatic cleaner or detergent. - 6. Rinsing: Thoroughly rinse the devices with purified water for a minimum of 2 minutes. Use a syringe, pipette or water jet to flush lumens/cannula/channels/holes. Articulate devices with moving parts under running water in order to rinse thoroughly. Repeat rinsing a total of three (3) times. - 7. Inspection: After cleaning/disinfection, devices should be visually inspected for contamination. If contamination is still visible, repeat steps 2, 3, 4, 5, 6 and 7. If devices continue to have visual contamination, do not use devices and contact Kyocera Customer Service for further instructions **Drying:** Allow devices to air dry for a minimum of 20 minutes prior to sterilization preparation. Devices must be thoroughly dried to remove residual moisture before they are stored. - 9. Preparation and Assembly: After cleaning/disinfection and inspection, any disassembled devices (Angled Driver Assembly and/or Large Modular Handle) should be reassembled and visually inspected. Check for misalignment, burrs, bent, or fractured tips. Do not use if any of this damage is observed. Mechanically test the working parts to verify that each device functions correctly. Place devices into appropriate configuration within instrument case and wrap with protective sterilization wrap according to AAMI / AORN guidelines. FDA cleared sterilization wrap must be used. - * Do not use high acidic (pH <4) or high alkaline (pH>10) products for disinfection or cleaning, since these can corrode metal, cause discoloration or stress fractures. KYOCERA has validated the above manual cleaning method with the provided solution examples. Other cleaning/disinfection methods may also be suitable; however, individuals or hospitals not using the recommended method are advised to validate any alternate method using appropriate laboratory techniques. #### STERILITY: S128 ALIF Implants are provided non-sterile, and must be sterilized before use. Sterilization is recommended as follows: | Cycle | Dynamic-air-removal Steam | |---------------------|----------------------------------------| | Minimum Temperature | 132° C (270° F) | | Exposure | 4 Minutes | | Drying Time | 30 Minutes Minimum; 40 Minutes Maximum | This sterilization cycle (drying time) is not considered by the Food and Drug Administration to be a standard sterilization cycle. It is the end user's responsibility to use only sterilizers and accessories (such as sterilization wraps, sterilization pouches, chemical indicators, biological indicators, and sterilization cassettes) that have been cleared by the Food and Drug Administration for the selected sterilization cycle specifications (time and temperature). These parameters are validated to sterilize only these devices. If other products are added to the sterilizer, the recommended parameters are not valid and a new cycle must be established by the user. The autoclave must be properly installed, maintained, and calibrated. Ongoing testing must be performed to confirm inactivation of all forms of viable microorganisms. Do not sterilize implants in contact with instruments or implants of other materials. Metallic oxide could transfer to the implant, initiating an unacceptable conditioning. The packaging in which non-sterile implants are supplied should not be used for sterilization methods in the hospital. The implants should be sterilized in the provided caddies. Repackaged and re-sterilized items must be properly labeled and marked with the expiration date mandated by hospital policy. References: References to relevant literature including the Surgical Technique Manual may be obtained by calling KYOCERA Medical Technologies, Inc. at (909) 557-2360. Caution: Federal Law USA restricts this device to sale by or on the order of a physician. KYOCERA Medical Technologies, Inc. 1200 California St., Suite 210 Redlands, CA 92374 USA Phone: (909) 557-2360